Respuesta :
Answer:
no, the maximum height = 12.3m
Explanation:
The equation for the trajectory of the ball for a given angle can be derived from:
(1) [tex]x=cos\phi v_0t[/tex]
and
(2) [tex]y=-\frac{1}{2}gt^2 +sin\phi v_0t[/tex]
Combining equation 1 and 2:
(3) [tex]y=xtan\phi -\frac{gx^2}{2cos^2\phi v_0^2}[/tex]
Taking the derivative:
(4) [tex]\frac{dy}{d\phi}=\frac{xsec^2\phi}{v_0^2}(v_0^2-gxtan\phi)[/tex]
Setting equation 4 equal to zero to calculate the maximum angle:
(5) [tex]\phi=tan^{-1}(\frac{v_0^2}{gx})[/tex]
Plugging equation 5 back into equation2 confirms, the trajectory can't reach the target. The maximum height is 12.3m.