Respuesta :

Answer:

[tex]\sqrt{3}[/tex]

Step-by-step explanation:

cot(-11pi/6)=cot(-pi-5pi/6)= -cot(5pi/6)=cot(pi/6)=[tex]\sqrt{3}[/tex]≈1.73

[tex]cot(\frac{-11\pi}{6} )=\sqrt{3}[/tex]

What is reference angle?

"An acute angle enclosed between the terminal arm and the x-axis."

For given question,

We need to find the value of [tex]cot(\frac{-11\pi}{6} )[/tex] using the reference angle.

We know that, [tex]cot\theta=\frac{cos\theta}{sin\theta}[/tex]

So, [tex]cot(\frac{-11\pi}{6})=\frac{cos(\frac{-11\pi}{6})}{sin(\frac{-11\pi}{6})}[/tex]               .................(1)

First we find the value of [tex]sin(\frac{-11\pi}{6})[/tex]

We know that [tex]sin(-\theta)=-sin(\theta)[/tex]

⇒ [tex]sin(\frac{-11\pi}{6})=-sin(\frac{11\pi}{6})[/tex]                 ...............(2)

Now,

[tex]sin(\frac{11\pi}{6})\\\\=sin(2\pi-\frac{\pi}{6})\\\\=-sin(\frac{\pi}{6})\\\\=-\frac{1}{2}[/tex]

From (2),

[tex]sin(\frac{-11\pi}{6})\\\\=-(-\frac{1}{2} )\\\\=\frac{1}{2}[/tex]                                .............(3)

Similarly we find the value of  [tex]cos(\frac{-11\pi}{6})[/tex]

We know that [tex]cos(-\theta)=cos(\theta)[/tex]

[tex]\Rightarrow cos(\frac{-11\pi}{6})=cos(\frac{11\pi}{6})[/tex]       ..........(4)

Now,

[tex]cos(\frac{11\pi}{6})\\\\=cos(2\pi-\frac{\pi}{6})\\\\=cos(\frac{\pi}{6})\\\\=\frac{\sqrt{3} }{2}[/tex]

From (4),

[tex]\Rightarrow cos(\frac{-11\pi}{6})\\\\=\frac{\sqrt{3} }{2}[/tex]                ......................(5)       .

From (1), (3) and (5),

[tex]cot(\frac{-11\pi}{6} )\\\\=\frac{\frac{\sqrt{3} }{2} }{\frac{1}{2} } \\\\=\sqrt{3}[/tex]

Therefore, [tex]cot(\frac{-11\pi}{6} )=\sqrt{3}[/tex]

Learn more about the reference angle here:

https://brainly.com/question/1603873

#SPJ2

ACCESS MORE