Respuesta :
Answer:
A) [tex](-3,-2)[/tex]
C) [tex](-1,-2)[/tex]
E) [tex](1,-2)[/tex]
F) [tex](1,2)[/tex]
Step-by-step explanation:
we have
[tex]y<0.5x+2[/tex]
The options are the points
[tex](-3,-2)[/tex],[tex](-2,1)[/tex],[tex](-1,-2)[/tex],[tex](-1,2)[/tex],[tex](1,-2)[/tex],[tex](1,2)[/tex]
we know that
If a ordered pair is a solution of the inequality
then
the ordered pair must be satisfy the inequality
Verify
Point A) [tex](-3,-2)[/tex]
Substitute the value of x and value of y in the inequality an compare
[tex]-2<0.5(-3)+2[/tex]
[tex]-2<0.5[/tex] -------> is true
The ordered pair [tex](-3,-2)[/tex] is a solution of the inequality
Point B) [tex](-2,1)[/tex]
Substitute the value of x and value of y in the inequality an compare
[tex]1<0.5(-2)+2[/tex]
[tex]1<1[/tex] -------> is not true
The ordered pair [tex](-2,1)[/tex] is not a solution of the inequality
Point C) [tex](-1,-2)[/tex]
Substitute the value of x and value of y in the inequality an compare
[tex]-2<0.5(-1)+2[/tex]
[tex]-2<1.5[/tex] -------> is true
The ordered pair [tex](-1,-2)[/tex] is a solution of the inequality
Point D) [tex](-1,2)[/tex]
Substitute the value of x and value of y in the inequality an compare
[tex]2<0.5(-1)+2[/tex]
[tex]2<1.5[/tex] -------> is not true
The ordered pair [tex](-1,2)[/tex] is not a solution of the inequality
Point E) [tex](1,-2)[/tex]
Substitute the value of x and value of y in the inequality an compare
[tex]-2<0.5(1)+2[/tex]
[tex]-2<2.5[/tex] -------> is true
The ordered pair [tex](1,-2)[/tex] is a solution of the inequality
Point F) [tex](1,2)[/tex]
Substitute the value of x and value of y in the inequality an compare
[tex]2<0.5(1)+2[/tex]
[tex]2<2.5[/tex] -------> is true
The ordered pair [tex](1,2)[/tex] is a solution of the inequality