Answer:
T = 23.54 N
Explanation:
Given,
Let 'T' be the tension in the string and 'a' be the acceleration of the block,
Hence, the angular acceleration of the pulley = [tex]\alpha\ =\ \dfrac{a}{R}[/tex]
From the f.b.d. of the mass
[tex]mg\ -\ T\ =\ ma\\\Rightarrow a\ =\ \dfrac{mg\ -\ T}{m}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,eqn (1),[/tex]
From the f.b.d. of the pulley,
[tex]\sum \tau\ =\ I\alpha\\\Rightarrow TR\ =\ \dfrac{1}{2}MR^2\times \dfrac{a}{R}\\\Rightarrow a\ =\ \dfrac{2T}{M}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,eqn (2)[/tex]
From the eqn (1) and (2), we get,
[tex]\dfrac{mg\ -\ T}{m}\ =\ \dfrac{2T}{M}\\\Rightarrow Mmg\ -\ MT\ =\ 2mT\\\Rightarrow Mmg\ =\ 2mT\ +\ MT\\\Rightarrow T\ =\ \dfrac{Mmg}{2m\ +\ M}\\\Rightarrow T\ = \ \dfrac{8.0\times 6.0\times 9.81}{2\times 6.0\ +\ 8.0}\\\Rightarrow T\ =\ 23.54\ N[/tex]
Hence, the tension in the cord while the mass is falling is 23.54 N