Answer:
a) [tex]\Delta U=22.97J[/tex]
b) [tex]C_{p}=73.57\frac{J}{molK}[/tex]
c) [tex]C_{v}=65.25\frac{J}{molK}[/tex]
Explanation:
[tex]Q=25.9J[/tex]
[tex]V_i=41.0cm^{3}=4.1e^{-5}m^3[/tex]
[tex]V_f=67.5cm^{3}=6.75e^{-5}m^3[/tex]
[tex]P=1.08atm=110444.3Pa[/tex]
a) The first law of thermodynamics tell us:
ΔU=Q-W
Where ΔU is the variation in internal energy, Q heat and W work done.
Now, [tex]W=P(V_f-V_i)[/tex].
[tex]\Delta U=Q-P(V_f-V_i)[/tex] ⇒ [tex]\Delta U=22.97J[/tex]
b) [tex]n=1.66 \cdot 10^{-3} mol[/tex]
At constant pressure we can write:
[tex]Q=nC_{p}\Delta T[/tex] ⇒ [tex]C_{p}=\frac{Q}{n\Delta T}[/tex]
But what's the change in temperature? We can use the Ideal Gas Law:
[tex]P\Delta V=nR\Delta T[/tex] ⇒ [tex]\Delta T=\frac{P\Delta V}{nR} =212.05K[/tex]
∴ [tex]C_{p}=73.57\frac{J}{molK}[/tex]
c) Now, we knoe that Cv and Cp are related by Cp-Cv=R.
⇒ Cv=Cp-R ⇒ [tex]C_{v}=65.25\frac{J}{molK}[/tex].