Respuesta :
Answer:
(a): [tex]\rm P =1.3148\times 10^{-13}}\times atmospheric\ pressure.[/tex].
(b): [tex]\rm 3.35\times 10^{11}\ molecules.[/tex]
Explanation:
Part (a):
Given, the pressure in the semiconductor industry which manufactures integrated circuits in large vacuum chambers, [tex]\rm P = 1.0\times 10^{-10}\ mm\ of\ Hg.[/tex]
We know,
1 mm of Hg = 133.322 Pa.
Therefore,
[tex]\rm P = 1.0\times 10^{-10}\ mm\ of\ Hg= 1.0\times 10^{-10}\times 133.322\ Pa= 1.33322\times 10^{-8}\ Pa.[/tex]
1 atmospheric pressure, [tex]\rm P_a[/tex] = 101325 Pa.
Thus,
[tex]\rm \dfrac{P}{P_a}=\dfrac{1.33322\times 10^{-8}\ Pa}{101325\ Pa}=1.3148\times 10^{-13}.\\\\\\\Rightarrow P =1.3148\times 10^{-13}}\ P_a.[/tex].
Part (b):
Now,
- Temperature, [tex]\rm T = 10\ ^\circ C=273.15+10=283.15\ K.[/tex]
- Diameter of the chamber, [tex]\rm D=50\ cm = 0.5\ m.[/tex]
- Height of the chamber, [tex]\rm h = 50\ cm = 0.5\ m.[/tex]
Volume of the cylindrical chamber is given by
[tex]\rm V = \pi (Radius)^2\times Height \\=\pi \times \left ( \dfrac D2\right )^2\times h\\=\pi \times \left ( \dfrac {0.5}2\right )^2\times 0.5\\=9.82\times 10^{-2}\ m^3.[/tex]
Using the Ideal gas equation,
[tex]\rm PV = nkT[/tex]
where,
- P = pressure of the gas.
- V = volume of the gas.
- n = number of molecules of the gas in volume V.
- k = Boltzmann constant, having value = [tex]\rm 1.38\times 10^{-23}\ m^2 kg s^{-2} K^{-1}.[/tex]
- T = absolute temperature of the gas.
Therefore,
[tex]\rm Number\ of\ molecules, n = \dfrac{PV}{kT}\\\\=\dfrac{ 1.33322\times 10^{-8}\times 9.82\times 10^{-2}}{1.38\times 10^{-23}\times 283.15}\\\\=3.35\times 10^{11}\ molecules.[/tex]
