Respuesta :
Answer:
(A) 3 years.
(B) True
(C) False
Explanation:
We will use compound interest formula to solve our given problems.
[tex]A=P(1+\frac{r}{n})^{nt}[/tex], where,
A = Final amount after t years,
P = Principal amount,
r = Annual interest rate in decimal form,
n = Number of times period is compounded per year,
t = Time in years.
(A)
[tex]8.50\%=\frac{8.50}{100}=0.085[/tex]
[tex]\$57,478.01=\$45,000(1+\frac{0.085}{1})^{1*t}[/tex]
[tex]\$57,478.01=\$45,000(1+0.085)^{t}[/tex]
[tex]\$57,478.01=\$45,000(1.085)^{t}[/tex]
[tex]\frac{\$57,478.01}{\$45,000}=\frac{\$45,000(1.085)^{t}}{\$45,000}[/tex]
[tex]1.2772891111=1.085^{t}[/tex]
Take natural log of both sides:
[tex]\text{ln}(1.2772891111)=\text{ln}(1.085^{t})[/tex]
[tex]\text{ln}(1.2772891111)=t\cdot\text{ln}(1.085)[/tex]
[tex]\frac{\text{ln}(1.2772891111)}{\text{ln}(1.085)}=\frac{t\cdot\text{ln}(1.085)}{\text{ln}(1.085)}[/tex]
[tex]\frac{0.2447399500948}{0.0815799869924229}=t[/tex]
[tex]2.99999=t[/tex]
[tex]t=2.99999[/tex]
[tex]t\approx 3[/tex]
Therefore, it will take approximately 3 years for the investment to grow to a value of $57,478.01.
(B)
[tex]15\%=\frac{15}{100}=0.15[/tex]
[tex]A=\$1(1+\frac{0.15}{1})^{1*82.3753}[/tex]
[tex]A=\$1(1+0.15)^{82.3753}[/tex]
[tex]A=\$1(1.15)^{82.3753}[/tex]
[tex]A=\$1*100,000.6466787091401[/tex]
[tex]A\approx \$100,000[/tex]
Since the final amount is approximately $100,000, therefore, the given statement is true.
(C)
[tex]15\%=\frac{15}{100}=0.15[/tex]
[tex]A=\$5(1+\frac{0.15}{1})^{1*82.3753}[/tex]
[tex]A=\$5(1+0.15)^{82.3753}[/tex]
[tex]A=\$5(1.15)^{82.3753}[/tex]
[tex]A=\$5*100,000.6466787091401[/tex]
[tex]A\approx \$500,003[/tex]
Since the final amount is approximately $500,000, therefore, the given statement is false.