Answer:1050.35 J
Explanation:
Given
length of chain=65 m
mass of chain=27 kg
we know work done is given by[tex]=\int_{a}^{b}F.dx[/tex]
Let [tex]\lambda [/tex]is mass density
[tex]\lambda =\frac{m}{L}=\frac{27}{65}[/tex]
[tex]\lambda =0.415 kg/m[/tex]
for dx length mass is dm
dm=[tex]\lambda dx[/tex]
We need to see the change in potential energy only as gravity is uniform and chain is freely suspended
[tex]=\int_{a}^{b}\lambda g.(65-x)dx[/tex]
[tex]=\int_{0}^{4}\left ( 65-x\right )dx=\lambda g\left [ 65x-\frac{x^2}{2} \right ]^4_0[/tex]
=1050.35 J