Respuesta :
Answer:
∆h = 0.071 m
Explanation:
I rename angle (θ) = angle(α)
First we are going to write two important equations to solve this problem :
Vy(t) and y(t)
We start by decomposing the speed in the direction ''y''
[tex]sin(\alpha) = \frac{Vyi}{Vi}[/tex]
[tex]Vyi = Vi.sin(\alpha ) = 9.2 \frac{m}{s} .sin(46) = 6.62 \frac{m}{s}[/tex]
Vy in this problem will follow this equation =
[tex]Vy(t) = Vyi -g.t[/tex]
where g is the gravity acceleration
[tex]Vy(t) = Vyi - g.t= 6.62 \frac{m}{s} - (9.8\frac{m}{s^{2} }) .t[/tex]
This is equation (1)
For Y(t) :
[tex]Y(t)=Yi+Vyi.t-\frac{g.t^{2} }{2}[/tex]
We suppose yi = 0
[tex]Y(t) = Yi +Vyi.t-\frac{g.t^{2} }{2} = 6.62 \frac{m}{s} .t- 4.9\frac{m}{s^{2} } .t^{2}[/tex]
This is equation (2)
We need the time in which Vy = 0 m/s so we use (1)
[tex]Vy (t) = 0\\0=6.62 \frac{m}{s} - 9.8 \frac{m}{s^{2} } .t\\t= 0.675 s[/tex]
So in t = 0.675 s → Vy = 0. Now we calculate the y in which this happen using (2)
[tex]Y(0.675s) = 6.62\frac{m}{s}.(0.675s)-4.9 \frac{m}{s^{2} } .(0.675s)^{2} \\Y(0.675s) =2.236 m[/tex]
2.236 m is the maximum height from the shell (in which Vy=0 m/s)
Let's calculate now the height for t = 0.555 s
[tex]Y(0.555s)= 6.62 \frac{m}{s} .(0.555s)-4.9\frac{m}{s^{2} } .(0.555s)^{2} \\Y(0.555s) = 2.165m[/tex]
The height asked is
∆h = 2.236 m - 2.165 m = 0.071 m
![Ver imagen LucianoBordoli](https://us-static.z-dn.net/files/d4c/7974f5fc167bcc8a61b2f21beab17f50.png)