A cannon fires a 0.2 kg shell with initial velocity vi = 9.2 m/s in the direction θ = 46 ◦ above the horizontal. The shell’s trajectory curves downward because of gravity, so at the time t = 0.555 s the shell is below the straight line by some vertical distance ∆h. Find this distance ∆h in the absence of air resistance. The acceleration of gravity is 9.8 m/s 2 .

Respuesta :

Answer:

∆h = 0.071 m

Explanation:

I rename angle (θ) = angle(α)

First we are going to write two important equations to solve this problem :

Vy(t) and y(t)

We start by decomposing the speed in the direction ''y''

[tex]sin(\alpha) = \frac{Vyi}{Vi}[/tex]

[tex]Vyi = Vi.sin(\alpha ) = 9.2 \frac{m}{s} .sin(46) = 6.62 \frac{m}{s}[/tex]

Vy in this problem will follow this equation =

[tex]Vy(t) = Vyi -g.t[/tex]

where g is the gravity acceleration

[tex]Vy(t) = Vyi - g.t= 6.62 \frac{m}{s} - (9.8\frac{m}{s^{2} }) .t[/tex]

This is equation (1)

For Y(t) :

[tex]Y(t)=Yi+Vyi.t-\frac{g.t^{2} }{2}[/tex]

We suppose yi = 0

[tex]Y(t) = Yi +Vyi.t-\frac{g.t^{2} }{2} = 6.62 \frac{m}{s} .t- 4.9\frac{m}{s^{2} } .t^{2}[/tex]

This is equation (2)

We need the time in which Vy = 0 m/s so we use (1)

[tex]Vy (t) = 0\\0=6.62 \frac{m}{s} - 9.8 \frac{m}{s^{2} } .t\\t= 0.675 s[/tex]

So in t = 0.675 s  → Vy = 0. Now we calculate the y in which this happen using (2)

[tex]Y(0.675s) = 6.62\frac{m}{s}.(0.675s)-4.9 \frac{m}{s^{2} }  .(0.675s)^{2} \\Y(0.675s) =2.236 m[/tex]

2.236 m is the maximum height from the shell (in which Vy=0 m/s)

Let's calculate now the height for t = 0.555 s

[tex]Y(0.555s)= 6.62 \frac{m}{s} .(0.555s)-4.9\frac{m}{s^{2} } .(0.555s)^{2} \\Y(0.555s) = 2.165m[/tex]

The height asked is

∆h = 2.236 m - 2.165 m = 0.071 m

Ver imagen LucianoBordoli
ACCESS MORE