Answer:
There are 364 ways of filling the offices.
Step-by-step explanation:
In this case, the order of filling of the offices does not matter, so, we can figure out the different ways of filling the offices by using the combination formula:
[tex]C^{n} _{r}=\frac{n!}{(n-r)!r!}[/tex]
where n=14 (number of members)
r=3 number of offices
n!=n·(n-1)·(n-2)·...·3·2·1
[tex]C^{14} _{3}=\frac{14!}{(14-3)!3!}=\frac{14*13*12*11*10*9*8*7*6*5*4*3*2*1}{(11*10*9*8*7*6*5*4*3*2*1)*(3*2*1)}=\frac{14*13*12}{3*2*1} =364[/tex]