Answer:
The velocity at t=1/10s will be:
[tex]v(\frac{1}{10})=2\frac{m}{s}[/tex]
Explanation:
The distance in meter as a function of time is:
[tex]f (t) = 10t^2[/tex], for 0 ≤ t ≤ 1 where t is in seconds.
We need to find the velocity [tex]v(\frac{1}{10})[/tex] of the surfer at [tex]t=\frac{1}{10}s[/tex].
For this we can use the definition of instantaneus velocity (in it's limit form):
[tex]v(t) = \lim_{\Delta t \to 0} \frac{f(t+\Delta t)-f(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{10(t+\Delta t)^2 - 10t^2}{\Delta t} \\= \lim_{\Delta t \to 0} \frac{10(t^2+2t\Delta t+\Delta t^2) - 10t^2}{\Delta t} = \lim_{\Delta t \to 0} \frac{20t\Delta t+10\Delta t^2}{\Delta t} \\= \lim_{\Delta t \to 0} \frac{(20t+10\Delta t)\Delta t}{\Delta t} = \lim_{\Delta t \to 0} 20t+10\Delta t = 20t[/tex]
At [tex]t=\frac{1}{10}s[/tex], we have:
[tex]v(\frac{1}{10}) = 20\frac{1}{10}=2\frac{m}{s}[/tex].