A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has a 7.20 m radius, at how many revolutions per minute are the riders subjected to a centripetal acceleration equal to that of gravity?

Respuesta :

Answer:1.16 rad/s

Explanation:

Given

radius of circular path(r)=7.20 m

let [tex]\omega [/tex]be the angular velocity of ride

and centripetal acceleration is given by [tex]\omega ^2r[/tex]

which should be equal to gravity(g)

[tex]\omega ^2r=g[/tex]

[tex]\omega ^2=\frac{g}{r}[/tex]

[tex]\omega =\sqrt{\frac{g}{r}}[/tex]

[tex]\omega =\sqrt{1.3625}[/tex]

[tex]\omega =1.16 rad/s[/tex]