Answer:
P(X=0) = 0.0224, P(X=1) = 0.2552, P(X=2) = 0.7224
Step-by-step explanation:
Let's define the following events
A: the first component meet specification
B: the second component meet specification
[tex]A^{c}[/tex]: the first component does not meet specification
[tex]B^{c}[/tex]: the second component does not meet specification
then
P(A) = 0.84, P([tex]A^{c}[/tex]) = 0.16, P(B) = 0.86 and P([tex]B^{c}[/tex]) = 0.14
we know that X = number of components that meet specifications, then, X can take the values 0, 1 or 2. Let's compute the probabilities P(X=0), P(X=1), P(X=2).
P(X=0) = P([tex]A^{c}\cap B^{c}[/tex]) = P([tex]A^{c}[/tex])P([tex]B^{c}[/tex]) (because components are independent)
= (0.16)(0.14)
= 0.0224
P(X=1) = P[[tex](A\cap B^{c})\cup(A^{c}\cap B)[/tex]]
= P([tex](A\cap B^{c})[/tex]) + P([tex](A^{c}\cap B)[/tex]) (because [tex](A\cap B^{c})[/tex] and [tex](A^{c}\cap B)[/tex] are mutually exclusive)
= P(A)P([tex]B^{c}[/tex]) + P([tex]A^{c}[/tex])P(B) (by independence)
= (0.84)(0.14) + (0.16)(0.86) = 0.2552
P(X=2) = P(A∩B)=P(A)P(B) (by independence)
= (0.84)(0.86)
= 0.7224
and the probability mass function of X is given by
P(X=0) = 0.0224, P(X=1) = 0.2552, P(X=2) = 0.7224