Respuesta :
Answer:
part (a) 46958.33 W
part (b) 43125 W
part (c) -57500 W
Explanation:
Given,
- Mass of the car = m = 1150 kg
- Angle of inclination of the hill = [tex]\theta\ =\ 30^o[/tex]
- Total time taken = t = 12 s
part (a)
Given that the velocity is constant,
Total displacement traveled by the car = s = 100 m
Work done by the car to reach at the top of the hill
[tex]w\ =\ mgsin30^0\times s\\\Rightarrow w\ =\ 1150\times 9.81\times sin30^o\times 100\\\Rightarrow w\ =\ 563500\ J[/tex]
Hence, power[tex]P \ =\ \dfrac{w}{t}\\\Rightarrow P\ =\ \dfrac{563500}{12}\\\Rightarrow P\ =\ 46958.33\ W[/tex]
part (b)
Given,
- final velocity = [tex]v_f\ =\ 30\ m/s.[/tex]
- Initial velocity = [tex]v_i\ =\ 0\ m/s[/tex]
Total power is equal to the ratio of the change in kinetic energy and total time taken
[tex]\therefore P\ =\ \dfrac{\Delta K.E}{t}\\\Rightarrow P\ =\ \dfrac{K.E_f\ -\ K.E_i}{t}\\\Rightarrow P\ =\ \dfrac{\dfrac{1}{2}mv_f^2\ -\ 0}{t}\\\Rightarrow P\ =\ \dfrac{mv_f^2}{2t}\\\Rightarrow P\ =\ \dfrac{1150\times 30^2}{2\times 12}\\\Rightarrow P\ =\ 43125\ W[/tex]
part (c)
- Initial velocity of the car = [tex]v_i\ =\ 35\ m/s.[/tex]
- Final velocity of the car = [tex]v_f\ =\ 5 m/s.[/tex]
Total power is equal to the ratio of the change in kinetic energy and total time taken
[tex]\therefore P\ =\ \dfrac{\Delta K.E}{t}\\\Rightarrow P\ =\ \dfrac{K.E_f\ -\ K.E_i}{t}\\\Rightarrow P\ =\ \dfrac{\dfrac{1}{2}mv_f^2\ -\ \dfrac{1}{2}mv_i^2}{t}\\\Rightarrow P\ =\ \dfrac{m(v_f^2\ -\ v_i^2)}{2t}\\\Rightarrow P\ =\ \dfrac{1150\times (5^2\ -\ 35^2)}{2\times 12}\\\Rightarrow P\ =\ -57500\ W[/tex]