At some instant, a particle traveling in a horizontal circular path of radius 5.90 m has a total acceleration with a magnitude of 18.0 m/s2 and a constant tangential acceleration of 12.0 m/s2. Determine the speed of the particle at this instant and (1/8) revolution later.

Respuesta :

Answer:

The final speed will be 8.02 rad/s.

Explanation:

Given that

radius ,r=5.9 m

Total acceleration = 18 [tex]m/s^2[/tex]

Tangential acceleration = 12 [tex]m/s^2[/tex]

Here particle is moving in circular path with varying linear speed.So there will be two acceleration ,one is radial acceleration and other one is tangential acceleration.

[tex]tangential\ acceleration=\alpha r[/tex]

12=α x 5.9

[tex]\alpha =2.03\ m/s^2[/tex]

[tex]Radial\ acceleration\, a_r={\omega ^2r}[/tex]

[tex]Total\ acceleration=\sqrt{\left({\omega ^2r}\right)^2+\left(\alpha r\right)^2}[/tex]

[tex]18^2=12^2+\omega ^4\times 5.9^2[/tex]

ω=2.2 rad/s

θ=2πn

θ=2 x π x 1/8 rad

θ=π /4 rad

[tex]\omega^2_f=\omega^2_i+2\alpha \theta[/tex]

[tex]\omega^2_f=2.2^2+2\times 2.03\times \dfrac{\pi}{4}[/tex]

[tex]\omega^2_f=8.02 rad/s[/tex]

So the final speed will be 8.02 rad/s.

ACCESS MORE