Answer:
The final speed will be 8.02 rad/s.
Explanation:
Given that
radius ,r=5.9 m
Total acceleration = 18 [tex]m/s^2[/tex]
Tangential acceleration = 12 [tex]m/s^2[/tex]
Here particle is moving in circular path with varying linear speed.So there will be two acceleration ,one is radial acceleration and other one is tangential acceleration.
[tex]tangential\ acceleration=\alpha r[/tex]
12=α x 5.9
[tex]\alpha =2.03\ m/s^2[/tex]
[tex]Radial\ acceleration\, a_r={\omega ^2r}[/tex]
[tex]Total\ acceleration=\sqrt{\left({\omega ^2r}\right)^2+\left(\alpha r\right)^2}[/tex]
[tex]18^2=12^2+\omega ^4\times 5.9^2[/tex]
ω=2.2 rad/s
θ=2πn
θ=2 x π x 1/8 rad
θ=π /4 rad
[tex]\omega^2_f=\omega^2_i+2\alpha \theta[/tex]
[tex]\omega^2_f=2.2^2+2\times 2.03\times \dfrac{\pi}{4}[/tex]
[tex]\omega^2_f=8.02 rad/s[/tex]
So the final speed will be 8.02 rad/s.