Answer:
0.014
Step-by-step explanation:
Hi!
Lets call:
D = {probability that a policyholder dies next year}
std = {policyholder is standard}
pref = {policyholder is preferred}
ultra = {policyholder is ultra-preferred}
We know that:
P(std) = 0.5
P(pref) = 0.4
P(ultra) = 0.1
P(D | std) = 0.01
P(D | std) = 0.005
P(D | std) = 0.001
We must find P(ultra | D). We can use Bayes theorem:
[tex]P(ultra|D)=P(D|ultra)\frac{P(ultra)}{P(D)}\\P(D) = P(D|std)P(std) + P(D|pref)P(pref)+P(D|ultra)P(ultra) = 0.0071[/tex]
Then P(ultra | D) = 0.014