Answer:
[tex]|C|=125.0408406m[/tex]
Step-by-step explanation:
For easy calculations let's use the supplementary angles:
[tex]180-20=160[/tex]
[tex]180-45=135[/tex]
[tex]A_x=54cos(160)=-50.74340152[/tex]
[tex]A_y=54sin(160)=18.46908774[/tex]
[tex]B_x=74cos(135)=-52.32590181[/tex]
[tex]B_y=74sin(135)=52.32590181[/tex]
Now lets calculate the magnitude of the vector C:
[tex]C=C_x+C_y[/tex]
where:
[tex]C_x=A_x+B_x=-103.0693033[/tex]
[tex]C_y=A_y+B_y=70.79498955[/tex]
Finally:
[tex]|C|=\sqrt{(C_x)^{2} +(C_y)^{2} } =125.0408406m[/tex]