Respuesta :
We want to find [tex]\vec F_4[/tex] such that the object needs is in equilibrium:
[tex]\vec F_1+\vec F_2+\vec F_3+\vec F_4=\vec0[/tex]
We're told that [tex]F_1=35\,\mathrm N[/tex], [tex]F_2=7\,\mathrm N[/tex], and [tex]F_3=9\,\mathrm N[/tex]. We also know the angle between [tex]\vec F_1[/tex] and [tex]\vec F_2[/tex] is 95º, which means
[tex]\vec F_1\cdot\vec F_2=F_1F_2\cos95^\circ=245\cos95^\circ[/tex]
[tex]\vec F_3[/tex] is perpendicular to both [tex]\vec F_1[/tex] and [tex]\vec F_2[/tex], so [tex]\vec F_1\cdot\vec F_3=\vec F_2\cdot\vec F_3=0[/tex].
If we take the dot product of [tex]\vec F_1[/tex] with the sum of all four vectors, we get
[tex]\vec F_1\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0[/tex]
[tex]\vec F_1\cdot\vec F_1+\vec F_1\cdot\vec F_2+\vec F_1\cdot\vec F_3+\vec F_1\cdot\vec F_4=0[/tex]
[tex]{F_1}^2+\vec F_1\cdot\vec F_2+0+\vec F_1\cdot\vec F_4=0[/tex]
[tex]\implies\vec F_1\cdot\vec F_4=-\left({F_1}^2+\vec F_1\cdot\vec F_2\right)[/tex]
We can do the same thing with [tex]\vec F_2[/tex] and [tex]\vec F_3[/tex]:
[tex]\vec F_2\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0[/tex]
[tex]\implies\vec F_2\cdot\vec F_4=-\left(\vec F_1\cdot\vec F_2+{F_2}^2\right)[/tex]
[tex]\vec F_3\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0[/tex]
[tex]\implies\vec F_3\cdot\vec F_4=-{F_3}^2[/tex]
Finally, if we do this with [tex]\vec F_4[/tex], we get
[tex]\vec F_4\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0[/tex]
[tex]\implies{F_4}^2=-\left(\vec F_1\cdot\vec F_4+\vec F_2\cdot\vec F_4+\vec F_3\cdot\vec F_4\right)[/tex]
[tex]\implies{F_4}^2=-\left(-\left({F_1}^2+\vec F_1\cdot\vec F_2\right)-\left(\vec F_1\cdot\vec F_2+{F_2}^2\right)-{F_3}^2\right)[/tex]
[tex]\implies F_4=\sqrt{{F_1}^2+{F_2}^2+{F_3}^2+2(\vec F_1\cdot\vec F_2)}[/tex]
[tex]\implies\boxed{F_4\approx36.2\,\mathrm N}[/tex]