Answer:
[tex]a_2\ =\ -33.65\ m/s^2[/tex]
Explanation:
Given,
For the first rocket,
For the second rocket,
Fro the first rocket,
Let 't' be the time taken by the first rocket A for whole the displacement
[tex]\therefore s\ =\ u_1t\ +\ \dfrac{1}{2}a_1t^2\\\Rightarrow 0\ =\ 4600t\ -\ 0.5\times 18t^2\\\Rightarrow t\ =\ \dfrac{4600}{0.5\times 18}\\\Rightarrow t\ =\ 511.11 sec[/tex]
Let [tex]a_2[/tex] be the acceleration of the second rocket B for the same time interval
from the kinematics,
[tex]\therefore s\ =\ ut\ +\ \dfrac{1}{2}at^2\\\Rightarrow s\ =\ u_2t\ +\ \dfrac{1}{2}a_2t^2\\\Rightarrow a_2\ =\ \dfrac{2s\ -\ 2u_2t}{t^2}\\\Rightarrow a_2\ =\ \dfrac{0\ -\ 2u_2t}{t^2}\\[/tex]
[tex]\Rightarrow a_2\ =\ -\dfrac{2u_2}{t}\\\Rightarrow a_2\ =\ -\dfrac{2\times 8600}{511.11}\\\Rightarrow a_2\ =\ -33.65\ m/s^2[/tex]
Hence the acceleration of the second rocket B is -33.65\ m/s^2.