Which of the following are ordered pairs for the given function? Select all that apply. f(x) = 1 + x (1, 2) (3, 3) (0, 2) (1, 0) (0, 1)

Respuesta :

Answer:

First option

Fifth option

Step-by-step explanation:

Given the following function:

[tex]f(x) = 1 + x[/tex]

We can rewrite it in this form:

[tex]y = 1 + x[/tex]

Let's substitute each ordered pair shown in the options into the function:

First option [tex](1, 2)[/tex]

Since:

[tex]x=1\\y=2[/tex]

We get:

[tex]2 = 1 + 1\\2=2[/tex]

Second option [tex](3, 3)[/tex]

Knowing that:

[tex]x=3\\y=3[/tex]

We get:

[tex]3= 1 + 3\\3\neq4[/tex]

Third option [tex](0, 2)[/tex]

Knowing that:

[tex]x=0\\y=2[/tex]

We get:

[tex]2= 1 + 0\\2\neq1[/tex]

Fourth option [tex](1, 0)[/tex]

Since:

[tex]x=1\\y=0[/tex]

We get:

[tex]0 = 1 + 1\\0\neq2[/tex]

Fifth option [tex](0, 1)[/tex]

Since:

[tex]x=0\\y=1[/tex]

We get:

[tex]1 = 1 + 0\\1=1[/tex]

Therefore the ordered pairs [tex](1, 2)[/tex] and  [tex](0, 1)[/tex] are for the given  function [tex]f(x) = 1 + x[/tex]

Answer:

first option

fifth option

Step-by-step explanation:

ACCESS MORE