Respuesta :
Answer: [tex](0.9460\ ,\ 0.9500)[/tex]
Step-by-step explanation:
Given : Population mean : [tex]\mu=0.9480[/tex]
Standard deviation : [tex]\sigma=0.0060[/tex]
Sample size : n=35
Significance level : [tex]\alpha=1-0.95=0.05[/tex]
Critical value = [tex]z_{\alpha/2}=\pm1.96[/tex]
The confidence interval for sample mean is given by :-
[tex]\mu\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
i.e. [tex]0.9480\pm (1.96)\dfrac{0.0060}{\sqrt{35}}[/tex]
[tex]\approx0.9480\pm0.0020=(0.9480-0.0020\ ,\ 0.9480+0.0020)\\\\=(0.9460\ ,\ 0.9500)[/tex]
Hence, the required interval= [tex](0.9460\ ,\ 0.9500)[/tex]
The 95% confidence interval for a random sample of 35 blended fuels is (0.9460 ; 0.9500)
Given the Parameters :
- Population mean, μ = 0.9480
- Standard deviation, σ = 0.0060
- Sample size, n = 35
- Zcritical, Z* = 1 - 0.95 = 0.05 [tex] = Z_{0.05} = ±1.96 [/tex]
The confidence interval is defined thus :
- μ ± Z*(σ/√n)
Confidence interval = 0.9480 ± 1.96(0.0060/√35)
Confidence interval = 0.9480 ± 0.0020
- Lower boundary = 0.9480 - 0.00020 = 0.9460
- Upper boundary = 0.9480 + 0.0020 = 0.9500
Therefore, the confidence interval is (0.9460 ; 0.9500)
Learn more :https://brainly.com/question/13274074