Respuesta :
Answer:
The magnitude is 90.5.
The direction of [tex](\vec{A}+ \vec{B})[/tex] is 45° south of west.
The direction of [tex](\vec{A} - \vec{B})[/tex] is 45° north of west.
Step-by-step explanation:
Let suppose the direction of unit vector as follows:
[tex]\hat{i}[/tex] in the eastern direction
[tex]\hat{j}[/tex] in the northern direction
Given:
Vector A with arrow has a magnitude of 64 units and points due west, while vector B with arrow has the same magnitude and points due south.
Therefore,
[tex]\vec{A} = -64 \hat{i}[/tex]
[tex]|\vec{A}| = 64[/tex]
And
[tex]\vec{B} = -64 \hat{j}[/tex]
[tex]|\vec{B}| = 64[/tex]
Formula used:
[tex]The\ magnitude\ of\ vector\ (\vec{A}+ \vec{B}) = \sqrt{|A|^{2}+|B|^{2}}[/tex]
And the direction is given by:
[tex]tan\theta = \frac{|A|}{|B|}[/tex]
Now,
The magnitude of [tex](\vec{A}+ \vec{B})[/tex]:
[tex]= \sqrt{|A|^{2}+|B|^{2}}[/tex]
[tex]= \sqrt{64^{2}+64^{2}}[/tex]
[tex]= 64\sqrt{2}[/tex]
[tex]= 90.5[/tex]
∴ The magnitude is 90.5.
And,
The direction relative to west is
[tex]tan\theta = \frac{|A|}{|B|}[/tex]
θ = tan⁻¹ (B/A) = tan⁻¹ (64/64) = tan⁻¹ 1 = 45° south of west
∴ The direction is 45° south of west.
Again,
The magnitude of [tex](\vec{A} - \vec{B})[/tex]:
[tex]= \sqrt{|A|^{2}+|B|^{2}}[/tex]
[tex]= \sqrt{64^{2}+64^{2}}[/tex]
[tex]= 64\sqrt{2}[/tex]
[tex]= 90.5[/tex]
∴ The magnitude is 90.5.
And,
The direction relative to west is
[tex]tan\theta = \frac{|A|}{|B|}[/tex]
θ = tan⁻¹ (B/A) = tan⁻¹ (64/64) = tan⁻¹ 1 = 45° north of west.
∴ The direction is 45° north of west.