Answer:
$5239
Explanation:
We will use future value formula to solve our given problem.
[tex]FV=PV(1+\frac{r}{n})^{nT}[/tex], where,
[tex]FV=\text{Future value}[/tex],
[tex]PV=\text{Present value}[/tex],
[tex]r=Annual interest rate in decimal form[/tex],
[tex]n=\text{Number of periods interest is compounded}[/tex],
[tex]T=\text{Time in years}[/tex].
[tex]7\%=\frac{7}{100}=0.07[/tex]
[tex]\$9,000=PV(1+\frac{0.07}{1})^{1*8}[/tex]
[tex]\$9,000=PV(1+0.07)^{8}[/tex]
[tex]\$9,000=PV(1.07)^{8}[/tex]
[tex]PV(1.07)^{8}=\$9,000[/tex]
[tex]PV*1.7181861798=\$9,000[/tex]
Rounding PV factor to 3 decimal places:
[tex]PV*1.718=\$9,000[/tex]
[tex]\frac{PV*1.718}{1.718}=\frac{\$9,000}{1.718}[/tex]
[tex]PV=\$5238.649592549476135[/tex]
[tex]PV\approx \$5239[/tex]
Therefore, Brenda should deposit $5239 now.