contestada

b. Brenda Young desires to have $9,000 eight years from now for her daughter’s college fund. If she will earn 7 percent (compounded annually) on her money, what amount should she deposit now? Use the present value of a single amount calculation. (Round PV factor to 3 decimal places and final answer to the nearest whole dollar.)

Respuesta :

Answer:

$5239

Explanation:

We will use future value formula to solve our given problem.

[tex]FV=PV(1+\frac{r}{n})^{nT}[/tex], where,

[tex]FV=\text{Future value}[/tex],

[tex]PV=\text{Present value}[/tex],

[tex]r=Annual interest rate in decimal form[/tex],

[tex]n=\text{Number of periods interest is compounded}[/tex],

[tex]T=\text{Time in years}[/tex].

[tex]7\%=\frac{7}{100}=0.07[/tex]

[tex]\$9,000=PV(1+\frac{0.07}{1})^{1*8}[/tex]

[tex]\$9,000=PV(1+0.07)^{8}[/tex]

[tex]\$9,000=PV(1.07)^{8}[/tex]

[tex]PV(1.07)^{8}=\$9,000[/tex]

[tex]PV*1.7181861798=\$9,000[/tex]

Rounding PV factor to 3 decimal places:

[tex]PV*1.718=\$9,000[/tex]

[tex]\frac{PV*1.718}{1.718}=\frac{\$9,000}{1.718}[/tex]

[tex]PV=\$5238.649592549476135[/tex]

[tex]PV\approx \$5239[/tex]

Therefore, Brenda should deposit $5239 now.