5. * In a parallogram ABCD, P divides AB in the ratio 2 : 5 and Q divides DC in the ratio 3 : 2. If AC and PQ intersect at R, find the ratios AR : RC and PR : RQ

Respuesta :

Answer

AR: RC = 1 : 1 and PR : RQ = 1 : 1

Step-by-step explanation:

Using figure 1 as shown below.

[tex]In\triangle ARP and \triangle QRC.[/tex]

[tex]\angle ARP =\angle QRC (vertically\ opposite\ angles)[/tex]

[tex]\angle PAR =\angle QCR \ (\because AB \parallel CD)[/tex]

[tex]\therefore \triangle ARP\sim \triangle QRC[/tex][tex](by AA similarity)[/tex]

[tex]\therefore\frac{AP}{AR} =\frac{QC}{RC}[/tex]

[tex]\frac{2x}{AR} =\frac{2x}{RC}[/tex]

[tex]AR: RC = 1: 1[/tex]

In the similar way,

[tex]\frac{QC}{RQ} =\frac{AP}{PR}[/tex]

[tex]\frac{PR}{RQ} = \frac{AP}{QC} =\frac{2x}{2x}[/tex]

[tex]Therefore, PR: RQ = 1: 1[/tex]

Ver imagen tallinn