Respuesta :
Answer:
f(x) = (2x+1)(3x−4)(x+5)
x = -5, x = -1/2, and x = 4/3
Step-by-step explanation:
Start by setting up the long division:
[tex]2x+1)\overline{6x^{3}+25x^{2}-29x-20}[/tex]
Look at the first terms. 2x goes into 6x³ a number of 3x² times.
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}[/tex]
2x+1 times 3x² is 6x³+3x².
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+1)} 6x^{3}+3x^{2}[/tex]
Subtract.
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}[/tex]
Now drop down the next term (the -29x).
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}[/tex]
Repeat the process. 2x goes into 22x² a number of 11x times.
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}+11x\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}[/tex]
Multiply:
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}+11x\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}\\\phantom{2x+1)6x^{3}+}22x^{2}+11x}[/tex]
Subtract:
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}+11x\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}\\\phantom{2x+1)6}-(22x^{2}+11x)\\\phantom{2x+1)6x^{3}} \overline{\phantom{+25x^{2}}-40x}[/tex]
Drop down the next term (-20):
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}+11x\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}\\\phantom{2x+1)6}-(22x^{2}+11x)\\\phantom{2x+1)6x^{3}} \overline{\phantom{+25x^{2}}-40x}-20[/tex]
2x goes into -40x a number of -20 times.
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}+11x-20\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}\\\phantom{2x+1)6}-(22x^{2}+11x)\\\phantom{2x+1)6x^{3}} \overline{\phantom{+25x^{2}}-40x}-20[/tex]
Multiply:
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}+11x-20\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}\\\phantom{2x+1)6}-(22x^{2}+11x)\\\phantom{2x+1)6x^{3}} \overline{\phantom{+25x^{2}}-40x}-20\\\phantom{2x+1)6x^{3}+25x} -40x-20[/tex]
Subtract:
[tex]\phantom{2x+1)6x^{3}+2}3x^{2}+11x-20\\2x+1)\overline{6x^{3}+25x^{2}-29x-20}\\\phantom{2x+} -(6x^{3}+3x^{2})\\\phantom{2x+1)} \overline{\phantom{6x^{3}+}22x^{2}}-29x}\\\phantom{2x+1)6}-(22x^{2}+11x)\\\phantom{2x+1)6x^{3}} \overline{\phantom{+25x^{2}}-40x}-20\\\phantom{2x+1)6x^{3}+2} -(-40x-20)\\\phantom{2x+1)6x^{3}+25x^{2}} \overline{\phantom{-40x-2}0}[/tex]
The remainder is 0. So f(x) can be factored as:
f(x) = (2x+1)(3x²+11x−20)
Which we can further factor using AC method:
f(x) = (2x+1)(3x−4)(x+5)
So the zeros are x = -5, x = -1/2, and x = 4/3.