Its horizontal and vertical velocities are given respectively by
[tex]v_x=1.9\dfrac{\rm m}{\rm s}+\left(1.1\dfrac{\rm m}{\mathrm s^2}\right)t[/tex]
[tex]v_y=3.7\dfrac{\rm m}{\rm s}+\left(-1.2\dfrac{\rm m}{\mathrm s^2}\right)t[/tex]
After [tex]t=3.4\,\mathrm s[/tex], the components of its velocity are
[tex]v_x=1.9\dfrac{\rm m}{\rm s}+\left(1.1\dfrac{\rm m}{\mathrm s^2}\right)(3.4\,\mathrm s)=5.64\dfrac{\rm m}{\rm s}[/tex]
[tex]v_y=3.7\dfrac{\rm m}{\rm s}+\left(-1.2\dfrac{\rm m}{\mathrm s^2}\right)(3.4\,\mathrm s)=-0.38\dfrac{\rm m}{\rm s}[/tex]
Its overall speed is the magnitude of its velocity:
[tex]\|\vec v\|=\sqrt{{v_x}^2+{v_y}^2}\approx5.7\dfrac{\rm m}{\rm s}[/tex]