Find the perimeter of the polygon with the given verices
![Find the perimeter of the polygon with the given verices class=](https://us-static.z-dn.net/files/df9/017f705640fe79a275387d41a02bbb9c.jpg)
Answer:
Step-by-step explanation:
GH: You don't need the distance formula for this distance. The x value cancels and you get (4 - - 3) = 7 units.
HJ: HJ = sqrt( 2 - - 2)^2 + (-3 - - 3)^2 ) = 4 I didn't see the y values as being the same.
JK: No need for the formula here either. The x values cancel. JK = abs(-3 - 4)
JK = 7
KG = The distance formula is not needed here either. The y values cancel.
KG = abs(2 - - 2)= 4
The perimeter = 7 + 4 + 7 + 4 = 22
Problem 7
UV: No need for the formula for this segment. The y values cancel. UV = abs(-2 -3) = 5
VW: The x values will cancel. VW = abs(4 - - 4) = 8
WU: You are going to have to use the formula here.
WU = sqrt( (y2 - y1)^2 + (x2 - x1) )
y2 = 4
y1 = - 4
x2 = -2
x1 = 3
WU = sqrt( (4 - - 4)^2 + (-2 - 3)^2 )
WU = sqrt( (8)^2 + (-5)^2 )
WU = sqrt ( 64 + 25)
WU = sqrt (89)
The perimeter = 5+ 8 + sqrt(89)
or
The perimeter = 13 + sqrt(89)
or
The perimeter = 13 + 9.43
The perimeter = 22.43
Answer:
6.
Perimeter = 22
7.
Perimeter = 13 + [tex]\sqrt{89}[/tex]
Step-by-step explanation:
Perimeter refers to sum of all the sides. Therefore, first we will find the length of sides using the given points by using the distance formula .
6.
Distance Formula :
Distance between points [tex]\left ( x_1,y_1 \right )\,,\,\left ( x_2,y_2 \right )[/tex] is equal to [tex]\sqrt{\left ( x_2-x_1 \right )^2+\left ( y_2-y_1 \right )^2}[/tex]
GH = [tex]\sqrt{\left ( 2-2 \right )^2+\left ( -3-4 \right )^2}=7[/tex]
HJ = [tex]\sqrt{\left ( -2-2 \right )^2+\left ( -3+3 \right )^2}=4[/tex]
JK = [tex]\sqrt{\left ( -2+2 \right )^2+\left ( 4+3 \right )^2}=7[/tex]
KG = [tex]\sqrt{\left ( 2+2 \right )^2+\left ( 4-4 \right )^2}=4[/tex]
So, Perimeter = 7 + 4 + 7 + 4 = 22
7.
UV = [tex]\sqrt{\left ( 3+2 \right )^2+\left ( 4-4 \right )^2}=5[/tex]
VW = [tex]\sqrt{\left ( 3-3 \right )^2+\left ( -4-4 \right )^2}=8[/tex]
UW = [tex]\sqrt{\left ( 3+2\right )^2+\left ( -4-4 \right )^2}=\sqrt{89}[/tex]
Therefore, perimeter = 5 + 8 + [tex]\sqrt{89}[/tex] = 13 + [tex]\sqrt{89}[/tex]