Answer: a) D = √148
m = (-5,4)
b) D = √241
m = (1, 7.5)
c) D = √20
m = (0,-4)
Step-by-step explanation:
Distance and Midpoint Formulas
distance = D = √[(x₂-x₁)² + (y₂-y₁)²]
Midpoint: m = ((x₂+x₁)/2 , (y₂+y₁)/2)
(−4, 10) and (−6, −2)
D = √[(-6-(-4))² + (-2-10)²] = √[(-6+4))² + (-2-10)²] = √[(-2))² + (-12)²] =
√[4 + 144] = √148
m = ((-6+(-4))/2 ; (-2+10)/2
m = (-10/2 ; 8/2)
m = (-5,4)
(−1, 15) and (3, 0)
D = √[(3-(-1))² + (0-15)²] = √[(3+1))² + (0-15)²] = √[(4)² + (-15)²] =
√[16 + 225] = √241
m = ((3+(-1))/2 ; (0+15)/2
m = (2/2 ; 15/2)
m = (1,7.5)
(2, −3) and (−2, −5)
D = √[(-2-2)² + ((-5)-(-3)²] = √[(-4))² + (-5+3)²] = √[(-4)² + (-2)²] =
√[16 + 4] = √20
m = (-2+2))/2 ; (-5+(-3))/2
m = (0/2 ; -8/2)
m = (0,-4)