Answer:
The electric field at x = 3L is 166.67 N/C
Solution:
As per the question:
The uniform line charge density on the x-axis for x, 0< x< L is [tex]\lambda[/tex]
Total charge, Q = 7 nC = [tex]7\times 10^{- 9} C[/tex]
At x = 2L,
Electric field, [tex]\vec{E_{2L}} = 500N/C[/tex]
Coulomb constant, K = [tex]8.99\times 10^{9} N.m^{2}/C^{2}[/tex]
Now, we know that:
[tex]\vec{E} = K\frac{Q}{x^{2}}[/tex]
Also the line charge density:
[tex]\lambda = \frac{Q}{L}[/tex]
Thus
Q = [tex]\lambda L[/tex]
Now, for small element:
[tex]d\vec{E} = K\frac{dq}{x^{2}}[/tex]
[tex]d\vec{E} = K\frac{\lambda }{x^{2}}dx[/tex]
Integrating both the sides from x = L to x = 2L
[tex]\int_{0}^{E}d\vec{E_{2L}} = K\lambda \int_{L}^{2L}\frac{1}{x^{2}}dx[/tex]
[tex]\vec{E_{2L}} = K\lambda[\frac{- 1}{x}]_{L}^{2L}] = K\frac{Q}{L}[frac{1}{2L}][/tex]
[tex]\vec{E_{2L}} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{2L}] = \frac{63}{L^{2}}[/tex]
Similarly,
For the field in between the range 2L< x < 3L:
[tex]\int_{0}^{E}d\vec{E} = K\lambda \int_{2L}^{3L}\frac{1}{x^{2}}dx[/tex]
[tex]\vec{E} = K\lambda[\frac{- 1}{x}]_{2L}^{3L}] = K\frac{Q}{L}[frac{1}{6L}][/tex]
[tex]\vec{E} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{6L}] = \frac{63}{6L^{2}}[/tex]
Now,
If at x = 2L,
[tex]\vec{E_{2L}} = 500 N/C[/tex]
Then at x = 3L:
[tex]\frac{\vec{E_{2L}}}{3} = \frac{500}{3} = 166.67 N/C[/tex]