Answer:2
Explanation:
Given
Total bags=38
No of bags containing black pen is [tex]n\left ( A\right )23[/tex]
No of bags containing blue pen [tex]n\left ( B\right )27[/tex]
No of bags containing pencil [tex]n\left ( C\right )21[/tex]
no of bags containing both Black pen & blue [tex]n\left ( A\cap B\right ) 15[/tex]
no of bags containing both Black pen & Pencil [tex]n\left ( B\cap C\right ) 12[/tex]
no of bags containing both Blue pen & Pencil [tex]n\left ( A\cap C\right ) 18[/tex]
no of bags containing all [tex]n\left ( A\cap B\cap C\right ) is 10[/tex]
using Venn diagram
[tex]n\left ( A\ \cup B\ \cup C\right )=n\left ( A\right )+n\left ( B\right )+n\left ( C\right )-n\left ( A\cap B\right )-n\left ( B\cap C\right )-n\left ( A\cap C\right )+n\left ( A\cap B\cap C\right )[/tex]
[tex]n\left ( A\ \cup B\ \cup C\right )=23+27+21-15-12-18+10[/tex]
[tex]n\left ( A\ \cup B\ \cup C\right )=36[/tex]
and we know [tex]n\left ( A\ \cup B\ \cup C\right )+n\left ( empty\ bag\right )=38[/tex]
[tex]n\left ( empty\ bag\right )=38-36=2 [/tex]
Therefore there are 2 bags which are empty.