Upon examining the contents of 38 backpacks, it was found that 23 contained a black pen, 27 contained a blue pen, and 21 contained a pencil, 15 contained both a black pen and a blue pen, 12 contained both a black pen and a pencil, 18 contained both a blue pen and a pencil, and 10 contained all three items. How many backpacks contained none of the three writing instruments?

Respuesta :

Answer:2

Explanation:

Given

Total bags=38

No of bags containing black pen is [tex]n\left ( A\right )23[/tex]

No of bags containing blue pen [tex]n\left ( B\right )27[/tex]

No of bags containing  pencil [tex]n\left ( C\right )21[/tex]

no of bags containing both Black pen & blue [tex]n\left ( A\cap B\right ) 15[/tex]

no of bags containing both Black pen & Pencil [tex]n\left ( B\cap C\right ) 12[/tex]

no of bags containing both Blue pen & Pencil [tex]n\left ( A\cap C\right ) 18[/tex]

no of bags containing all [tex]n\left ( A\cap B\cap C\right ) is  10[/tex]

using Venn diagram

[tex]n\left ( A\ \cup B\ \cup C\right )=n\left ( A\right )+n\left ( B\right )+n\left ( C\right )-n\left ( A\cap B\right )-n\left ( B\cap C\right )-n\left ( A\cap C\right )+n\left ( A\cap B\cap C\right )[/tex]

[tex]n\left ( A\ \cup B\ \cup C\right )=23+27+21-15-12-18+10[/tex]

[tex]n\left ( A\ \cup B\ \cup C\right )=36[/tex]

and we know [tex]n\left ( A\ \cup B\ \cup C\right )+n\left ( empty\ bag\right )=38[/tex]

[tex]n\left ( empty\ bag\right )=38-36=2 [/tex]

Therefore there are 2 bags which are empty.

Ver imagen nuuk
ACCESS MORE