Respuesta :
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
Given:
- Charge on first charged particle, [tex]q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.[/tex]
- Charge on the second charged particle, [tex]q_2=3.80\ nC=3.80\times 10^{-9}\ C.[/tex]
- Position of the first charge = [tex](x_1=0.00\ m,\ y_1=0.600\ m).[/tex]
- Position of the second charge = [tex](x_2=1.50\ m,\ y_2=0.650\ m).[/tex]
The electric field at a point due to a charge [tex]q[/tex] at a point [tex]r[/tex] distance away is given by
[tex]\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.[/tex]
where,
- [tex]k[/tex] = Coulomb's constant, having value [tex]\rm 8.99\times 10^9\ Nm^2/C^2.[/tex]
- [tex]\vec r[/tex] = position vector of the point where the electric field is to be found with respect to the position of the charge [tex]q[/tex].
- [tex]\hat r[/tex] = unit vector along [tex]\vec r[/tex].
The electric field at the origin due to first charge is given by
[tex]\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.[/tex]
[tex]\vec r_1[/tex] is the position vector of the origin with respect to the position of the first charge.
Assuming, [tex]\hat i,\ \hat j[/tex] are the units vectors along x and y axes respectively.
[tex]\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.[/tex]
Using these values,
[tex]\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.[/tex]
The electric field at the origin due to the second charge is given by
[tex]\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.[/tex]
[tex]\vec r_2[/tex] is the position vector of the origin with respect to the position of the second charge.
[tex]\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.[/tex]
Using these values,
[tex]\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\ N/C.[/tex]
The net electric field at the origin due to both the charges is given by
[tex]\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.[/tex]
Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.