Answer: Option (4) is the correct answer.
Explanation:
Relation between potential energy and charge is as follows.
U = [tex]\frac{1}{4 \pi \epsilon_{o}}[\frac{q_{1}q_{2}}{r_{12}} + \frac{q_{2}q_{3}}{r_{23}} + \frac{q_{3}q_{1}}{r_{31}}][/tex]
As it is given that [tex]q_{1} = 1 \times 10^{-8} C[/tex], [tex]q_{2} = 2 \times 10^{-8} C[/tex], and [tex]q_{3} = 3 \times 10^{-8} C[/tex].
Distance between the charges = 1 cm = [tex]1 \times 10^{-2} m[/tex] (as 1 cm = 0.01 m)
Hence, putting these given values into the above formula as follows.
U = [tex]\frac{1}{4 \pi \epsilon_{o}}[\frac{q_{1}q_{2}}{r_{12}} + \frac{q_{2}q_{3}}{r_{23}} + \frac{q_{3}q_{1}}{r_{31}}][/tex]
= [tex]9 \times 10^{9} [\frac{1 \times 10^{-8} \times 2 \times 10^{-8}}{10^{-2}} + \frac{2 \times 10^{-8} \times 3 \times 10^{-8}}{10^{-2}} + \frac{3 \times 10^{-8} \times 1 \times 10^{-8}}{10^{-2}}][/tex]
= [tex]9 \times 10^{9} [2 + 6 + 1.5][/tex]
= [tex]85.5 \times 10^{-5}[/tex] J
= 0.00085 J
Thus, we can conclude that the potential energy of this arrangement, relative to the potential energy for infinite separation, is about 0.00085 J.