Answer:
[tex]\Delta u = 53.99 Btu/lbm[/tex]
Explanation:
given data:
[tex]P_1 = 160 lbf/in^2 = 23040 lbf/ft^2[/tex]
[tex]P_2 = 300 lbf/in^2 = 56160 lbf/ft^2[/tex]
[tex]V_1 = 1ft^3[/tex]
Q = - 2.1 Btu
[tex]PV^{1.1} = constant[/tex]
[tex]P_1V_1^{1.1} = P_2V_2^{1.1}[/tex]
[tex]V_2 = V_1 [\frac{P_1}{P_2}]^{1.1}[/tex]
[tex]= 1 [\frac{23040}{56160}]^{\frac{1}{1.1}[/tex]
[tex]= 0.44 ft^3[/tex]
work done during polytropic process
[tex]w = \frac{P_2V_2 - P_1V_1}{1-n}[/tex]
[tex]= \frac{56160 \times 0.4759 - 23040\times 1}{1 - 1.2} [/tex]
= -18442.1 ft lbf
we know 1 Btu = 778.169 ft. lbf, therefore
w = -23.6993 Btu
[tex]Q = W + m\Delta u[/tex]
[tex]-2.1 = - 23.6993 + 0.4 \Delta u[/tex]
[tex]\Delta u = 53.99 Btu/lbm[/tex]