Redesigned Computers has 9 percent coupon bonds outstanding with a current market price of $896.23. The yield to maturity is 10.34 percent and the face value is $1,000. Interest is paid semiannually. How many years is it until this bond matures

Respuesta :

Answer:

16 years to maturity

Explanation:

We will calculate time:

The bonds present value is 896.23

YTM 10.34

and the face value is 1,000

[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]

Coupon Payment: 45 (1,000 x 9% / 2 payment per year)

time n

rate 0.0517 (10.34/2 payment per year

[tex]45 \times \frac{1-(1+0.0517)^{-n} }{0.0517} = PV\\[/tex]

PVc

[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]  

Maturity   1,000.00

time   n

rate  0.0517

[tex]\frac{1000}{(1 + 0.0517)^{n} } = PV[/tex]  

PVm

PV c + PV m = 896.23

[tex]45 \times \frac{1-(1+0.0517)^{-n} }{0.0517} + \frac{1000}{(1 + 0.0517)^{n} } = 896.23[/tex]  

We rearrenge:

[tex](1-(1+0.0517)^{-n})\times \frac{45}{0.0517}+(1+0.0517)^{-n} \times 1,000 = 896.23[/tex]

We solve to clear the expression 1.0517 power -n:

[tex]870.4061896 - 870.4061896(1.0517)^{-n}) + 1000(1.0517)^{-n} = 896.23[/tex]

[tex] 129.59(1.0517)^{-n} = 896.23 - 870.4061896[/tex]

[tex](1.0517)^{-n} = 25.82381044 \div 129.59 [/tex]

We now use logarithmics properties:

[tex]log0.20 \div log1.0517 = -n[/tex]

n = 32.00  

These are semianual payment, so we will divide by two to get the time expressses in years:

32/2 = 16 years to maturity

ACCESS MORE