Answer:
part (a) P.E. (at A) = [tex]-36\times \left (\dfrac{q_1}{0.25}\ +\ \dfrac{q_2}{0.35}\ \right )[/tex]
part (b) P.E. (at B) = [tex]-36\times \left (\dfrac{q_1}{0.35}\ +\ \dfrac{q_2}{0.25}\ \right )[/tex]
Explanation:
Given,
Net electric field due to the the both charges on the third charge at point A.
[tex]P.E.\ =\ \dfrac{kq_1q_3}{a}\ +\ \dfrac{kq_2q_3}{\sqrt{2} a}\\\Rightarrow P.E.\ =\ kq_3\left (\dfrac{q_1}{a}\ +\ \dfrac{q_2}{\sqrt{2}a}\ \right )\\\Rightarrow P.E.\ =\ 9\times 10^9\times (-4.0)\times 10^{-9}\left (\dfrac{q_1}{0.25}\ +\ \dfrac{q_2}{\sqrt{2}\times 0.25}\ \right )\\\Rightarrow P.E.\ =\ -36\times \left (\dfrac{q_1}{0.25}\ +\ \dfrac{q_2}{0.35}\ \right )[/tex]
part (b)
Net electric field due to the the both charges on the third charge at point B.
[tex]P.E.\ =\ \dfrac{kq_1q_3}{a}\ +\ \dfrac{kq_2q_3}{\sqrt{2} a}\\\Rightarrow P.E.\ =\ kq_3\left (\dfrac{q_2}{a}\ +\ \dfrac{q_1}{\sqrt{2}a}\ \right )\\\Rightarrow P.E.\ =\ 9\times 10^9\times (-4.0)\times 10^{-9}\left (\dfrac{q_2}{0.25}\ +\ \dfrac{q_1}{\sqrt{2}\times 0.25}\ \right )\\\Rightarrow P.E.\ =\ -36\times \left (\dfrac{q_2}{0.25}\ +\ \dfrac{q_1}{0.35}\ \right )[/tex]