contestada

Which two functions are inverses of each other?
f(x)= x, g(x) = -x
f(x)= 2x, g(x) = - 1/2x
f(x) = 4x, g(x) = 1/4x
f(x) = -8x, g(x) = 8x

Respuesta :

Answer:

Option 3 - f(x)= 4x, [tex]g(x) = \frac{1}{4}x[/tex]

Step-by-step explanation:

To find : Which two functions are inverses of each other?

Solution :

Two functions are inverse if [tex]f(g(x))=x=g(f(x))[/tex]

Now, we find one by one

1) f(x)= x, g(x) = -x

[tex]f(g(x))=f(-x)=-x\neq x[/tex]

Not true.

2) f(x)= 2x, [tex]g(x) = -\frac{1}{2}x[/tex]

[tex]f(g(x))=f(-\frac{1}{2}x)=2\times(-\frac{1}{2}x)=-x\neq x[/tex]

Not true.

3) f(x)= 4x, [tex]g(x) = \frac{1}{4}x[/tex]

[tex]f(g(x))=f(\frac{1}{4}x)=4\times(\frac{1}{4}x)=x[/tex]

[tex]g(f(x))=f(4x)=\frac{1}{4}\times 4x=x[/tex]

i.e. [tex]f(g(x))=x=g(f(x))[/tex] is true.

So, These two functions are inverse of each other.

4) f(x)= -8x, [tex]g(x) =8x[/tex]

[tex]f(g(x))=f(8x)=8\times(-8x)=-64x\neq x[/tex]

Not true.

Therefore, Option 3 is correct.

Answer:

C on edge

Step-by-step explanation:

I took the test