Step-by-step explanation:
A="All 5 selected workers will be from the day shift"
B="All 5 selected workers will be from the same shift"
C="At least two different shifts will be represented"
D="At least one of the shifts will be unrepresented in the sample of workers?"
a) #selections=[tex](^{10}_5)=\frac{10!}{5!(10-5)!}=252[/tex]
[tex]P(A)=\frac{(^{10}_5)}{(^{24}_5)}}=\frac{252}{42504}=\frac{3}{506}=5.929\times10^{-3}[/tex]
b) [tex]P(B)=\frac{(^{10}_5)+(^8_5)+(^6_5)}{(^{24}_5)}}=\frac{252+56+6}{42504}=7.387\times^{-3}[/tex]
c) P(C)=1-P(B)=0.9926
d) P(D)=1-P(D')=[tex]1-\frac{(^{10}_3)(^8_1)(^6_1)+(^{10}_2)(^8_2)(^6_1)+(^{10}_2)(^8_1)(^6_2)+(^{10}_1)(^8_3)(^6_1)+(^{10}_1)(^8_2)(^6_2)+(^{10}_1)(^8_1)(^6_3)}{(^{24}_5)}=1-0.6559=0.3441[/tex]