Answer:
The time needed to take off is [tex]t=26.8s[/tex].
Explanation: Let's order the information.
[tex]x_i=0.00m[/tex]
[tex]v_i=0.00\frac{m}{s}[/tex]
[tex]a=5.00\frac{m}{s^2}[/tex]
[tex]x_f=1800.00m[/tex]
From Kinematics, the law for position as a function of time is:
[tex]x(t)=x_i+v_it+\frac{1}{2}at^2[/tex]
So the time needed to take off will fallow this rule:
[tex]x_f=x_i+v_it+\frac{1}{2}at^2[/tex] ⇒ [tex](x_i-x_f)+v_it+\frac{1}{2}at^2=0[/tex]
⇒ [tex]-x_f+\frac{1}{2}at^2=0[/tex] ⇒ [tex]t=\sqrt{\frac{2x_f}{a} }[/tex]
∴ [tex]t=\sqrt{\frac{2x_f}{a} }=26.83s[/tex].
This is the time needed to take off.
Written with only three significant figures:
[tex]t=26.8s[/tex].
Where the 8 stays the same since 3<5.