Respuesta :

Answer:

The point E is located at (9,0)

x=9, y=0

Step-by-step explanation:

we have that

Points C,D, and E are collinear on CE

Point D is between point C and point E

we know that

[tex]CE=CD+DE[/tex] -----> equation A (by addition segment postulate)

[tex]\frac{CD}{DE}=\frac{3}{5}[/tex]

[tex]CD=\frac{3}{5}DE[/tex] ------> equation B

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance CD  

we have

C(1,8), D(4,5)

substitute in the formula

[tex]CD=\sqrt{(5-8)^{2}+(4-1)^{2}}[/tex]

[tex]CD=\sqrt{(-3)^{2}+(3)^{2}}[/tex]

[tex]CD=\sqrt{18}\ units[/tex]

Find the distance DE

substitute the value of CD in the equation B and solve for DE

[tex]\sqrt{18}=\frac{3}{5}DE[/tex]

[tex]DE=\frac{5\sqrt{18}}{3}\ units[/tex]

Find the distance CE

[tex]CE=CD+DE[/tex]

we have

[tex]DE=\frac{5\sqrt{18}}{3}\ units[/tex]

[tex]CD=\sqrt{18}\ units[/tex]

substitute the values in the equation A

[tex]CE=\sqrt{18}+\frac{5\sqrt{18}}{3}[/tex]

[tex]CE=\frac{8\sqrt{18}}{3}[/tex]

Applying the formula of distance CE

we have

[tex]CE=\frac{8\sqrt{18}}{3}[/tex]

C(1,8), E(x,y)    

substitute in the formula of distance

[tex]\frac{8\sqrt{18}}{3}=\sqrt{(y-8)^{2}+(x-1)^{2}}[/tex]

squared both sides

[tex]128=(y-8)^{2}+(x-1)^{2}[/tex]  -----> equation C

Applying the formula of distance DE

we have

[tex]DE=\frac{5\sqrt{18}}{3}\ units[/tex]

D(4,5), E(x,y)    

substitute in the formula of distance

[tex]\frac{5\sqrt{18}}{3}=\sqrt{(y-5)^{2}+(x-4)^{2}}[/tex]

squared both sides

[tex]50=(y-5)^{2}+(x-4)^{2}[/tex]  -----> equation D

we have the system

[tex]128=(y-8)^{2}+(x-1)^{2}[/tex]  -----> equation C

[tex]50=(y-5)^{2}+(x-4)^{2}[/tex]  -----> equation D

Solve the system by graphing

The intersection point both graphs is the solution of the system

The solution is the point (9,0)

therefore

The point E is located at (9,0)

see the attached figure to better understand the problem

Ver imagen calculista

Otras preguntas

ACCESS MORE