Respuesta :
Answer:
The answer to your question is: Cp = 0.6373 J/g°C
Explanation:
Sample
mass = 245.7 g
T1 = 75°C
T2 = 34°
Cp = ?
Water
Mass = 115.4 g
T1 = 22°C
T2 = 34°
Cp = 4.184 J/g°C
Heat of metal = mCp(T2 - T1) = 245.7Cp (34 - 75) = -9090.9Cp
Heat of water = = 115.4(4.184)(34 - 22) = -5794
Heat of metal = heat of water
-9090.9Cp = -5794
Cp = -5794 / -9090.9
Cp = 0.6373 J/g°C specific heat of metal
Answer: The specific heat of the metal is [tex]0.58J/g^0C[/tex]
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.
[tex]heat_{absorbed}=heat_{released}[/tex]
As we know that,
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex] .................(1)
where,
q = heat absorbed or released
[tex]m_1[/tex] = mass of metal = 245.7 g
[tex]m_2[/tex] = mass of water = 115.4 g
[tex]T_{final}[/tex] = final temperature = [tex]34^0C[/tex]
[tex]T_1[/tex] = temperature of metal = [tex]75^oC[/tex]
[tex]T_2[/tex] = temperature of water = [tex]22^oC[/tex]
[tex]c_1[/tex] = specific heat of metal = ?
[tex]c_2[/tex] = specific heat of water= [tex]4.184J/g^0C[/tex]
Now put all the given values in equation (1), we get
[tex]-245.7\times c\times (75-34)=[115.4\times 4.184\times (34-22)][/tex]
[tex]c=0.58J/g^0C[/tex]
Therefore, the specific heat of the metal is [tex]0.58J/g^0C[/tex]