Answer:
The actual efficiency is:
[tex]n_{actual} = 2,76 %[/tex]
The maximum efficiency possible is:
[tex]n_{max} = 31,18 %[/tex]
The rate of heat rejection is:
[tex]Q_{rej} = 774621,3 kW[/tex]
Explanation:
Considering the specific heat of water 4,1813 KJ/kgK the energy that goes in the system is:
[tex]Q_{in} = 440 kg/s * 4,1813 KJ/kgK * 433 K = 796621,3 kW[/tex]
The heat energy that goes out in an ideal situation (Tout = 25°C):
[tex]Q_{out} = 440 kg/s * 4,1813 KJ/kgK * 298 K = 548252,1 kW[/tex]
The maximum heat that can be obtained is:
[tex]Q_{max} = Q_{in} - Q_{out} = 248369,2 kW[/tex]
So the maximum efficiency possible is:
[tex]n_{max} = \frac{Q_{max} }{Q_{in} } = 31,18 %[/tex]
The actual efficiency is:
[tex]n_{actual} = \frac{W_{out} }{Q_{in} } = \frac{22000 kW} }{796621,3 kW } =2,76 %[/tex]
Where [tex]W_{out}[/tex] is the obtained work equal to 22 MW
From the balance of energy, the rate of heat rejection is:
[tex]Q_{rej} = Q_{in} - W_{out} = 774621,3 kW[/tex]