Answer:
There is an interval of 24.28s in which the rocket is above the ground.
Explanation:
[tex]y_{i}=0m[/tex]
[tex]v_i=80\frac{m}{s}[/tex]
[tex]a=4\frac{m}{s^2}[/tex]
[tex]y_{e}=1000m[/tex]
[tex]g=9.8\frac{m}{s^2}[/tex]
From Kinematics, the position [tex]y[/tex] as a function of time when the engine still works will be:
[tex]y(t)=v_it+\frac{1}{2}at^2[/tex]
At what time the altitud will be [tex]y_{e}=1000m[/tex]?
[tex]v_it+\frac{1}{2}at^2=y_{e}[/tex] ⇒ [tex]\frac{1}{2}at^2+v_it-y_{e}=0[/tex]
Using the quadratic formula: [tex]t_1=10s[/tex].
How much time does it take for the rocket to touch the ground? No the function of position is:
[tex]y(t)=y_{e}+v_et-\frac{1}{2}gt^2[/tex]
Where our new initial position is [tex]y_{max}[/tex], the velocity when the engine breaks is [tex]v_e=v_i+at=120\frac{m}{s}[/tex] and the only acceleration comes from gravity (which points down).
Now, when the rocket tounches the ground:
[tex]y_{e}+v_et-\frac{1}{2}gt^2=0[/tex]
Again, using the quadratic ecuation:
[tex]t_2=24.49s[/tex]
Now, the total time from the moment it takes off and the moment it tounches the ground will be:
[tex]t_T=t_1+t_2=34.49s[/tex].