Respuesta :

The factorization of the expression [tex]9 x^{2}-4 y^{2}[/tex]  is (3x+2y) (3x-2y).

Solution:

In the expression [tex]9 x^{2}-4 y^{2}, 9 x^{2}[/tex]  can be written as [tex](3 x)^{2}[/tex]  . Similarly [tex]4 y^{2}[/tex]  can be written as [tex](2 y)^{2}[/tex]  

[tex]9 x^{2}-4 y^{2}=(3 x)^{2}-(2 y)^{2}[/tex]

Since both terms [tex](3 x)^{2}[/tex]  and [tex](2 y)^{2}[/tex] are perfect squares, using the difference of squares formula,

[tex]a^{2}-b^{2}=(a+b)(a-b)[/tex]

Here a = (3x) and b = (2y)

[tex](3 x)^{2}-(2 y)^{2}=(3 x+2 y)(3 x-2 y)[/tex]

(3x+2y)  and  (3x-2y)  are the factors of [tex]9 x^{2}-4 y^{2}[/tex]

ACCESS MORE