Hg(NO₃)₂(ac) + Na₂S(ac) → HgS(s) + 2Na⁺ + 2NO₃⁻
Now we calculate the moles of each reagent -using the molecular weights-, in order to determine the limiting reactant:
Because the stoichiometric ratio between the reactants is 1:1, we compare the number of moles of each one upfront.
moles Hg(NO₃)₂ > moles Na₂S
Thus Na₂S is the limiting reagent.
So in order to find the mass of solid precipitate, we must calculate it using the moles of Na₂S:
[tex]0.1837 molNa_{2} S*\frac{1molHgS }{1molNa_{2}S}*\frac{232.66g}{1molHgS} =42.740g[/tex]
The mass of the solid precipitate is 42.760 g.
Mass of Hg(NO₃)₂ remaining = [tex]85.14g-(0.1837molHg(NO_{3})_{2} * 324.7 g/mol)=25.49g[/tex]
The mass of the remaning reactant in excess is 25.49 g.
Hg⁺²: 0 mol
NO₃⁻: [tex]0.2622molHg(NO_{3})_{2} *\frac{2molNO_{3}^{-}}{1molHg(NO_{3})_{2} *} =0.5244molNO_{3}^{-}[/tex]
Na⁺: [tex]0.1837molNa_{2} S*\frac{1molNa^{+}}{1molNa_{2}}=0.1837molNa^{+}[/tex]
S²⁻: 0 mol