Answer:
The volume air flow rate is [tex]47.92 ft^{3}/s[/tex]
The output of the fan is 0.446 hp
Solution:
As per the question:
Diameter of the round duct, d = 0.30 m
Radius of the duct, R = [tex]\frac{d}{2} = \frac{0.30}{2} = 0.15 m[/tex]
Pressure of the opening, P = 2.5 cm of water = 0.025 m of water
P = [tex]0.025\times 9.8\times 1000 = 245 Pa[/tex]
Density of air, [tex]\rho_{a} = 1.22 kg/m^{3}[/tex]
Now, the velocity, v can be calculated as:
[tex]\Delta P = \frac{1}{2}\rho_{a} v^{2}[/tex]
[tex]v = \sqrt{\frac{2\Delta P}{\rho_{a}}[/tex]
[tex]v = \sqrt{\frac{2\times 245}{1.22} = 19.212 m/s[/tex]
Now,
Volume rate of air flow is given by:
[tex]V_{f} = Av = \pi R^{2}\times v[/tex]
[tex]V_{f} = Av = \pi (0.15)^{2}\times 19.21 = 1.357 m^{3}/s[/tex]
Now,
1 ft = 3.2808 m
[tex]V_{f} = 1.357\times (3.2808)^{3} = 47.92 ft^{3}/s[/tex]
Now, the output of the fan in horsepower (hp):
Power output, P' = [tex]\Delta P\times V = 245\times 1.36 = 333.2 W[/tex]
Now,
1 hp = 746 W
P' (in hp) = [tex]\frac{P'}{746} = 0.446 hp[/tex]