Respuesta :
Answer:
Part a)
[tex]r = 6.96 \times 10^6 m[/tex]
Part b)
[tex]F_g = 3.004 \times 10^3 N[/tex]
Part c)
[tex]a = 0.88 m/s^2[/tex]
Part d)
[tex]v = \frac{2480}{2} = 1240 m/s[/tex]
Explanation:
Part a)
As we know that the orbital speed of the satellite is given as
[tex]v = 2480 m/s[/tex]
now we will have
[tex]v = \sqrt{\frac{GM_{mars}}{r}}[/tex]
now we have
[tex]M_{mars} = 6.4191 \times 10^{23} kg[/tex]
[tex]R_{mars} = 3.397 \times 10^6 m[/tex]
now we have
[tex]2480 = \sqrt{\frac{(6.67 \times 10^{-11})(6.4191 \times 10^{23})}{r}}[/tex]
[tex]r = 6.96 \times 10^6 m[/tex]
Part b)
Here force between mars and satellite is the gravitational attraction force which is given as
[tex]F_g = \frac{GM_{mars} m}{r^2}[/tex]
[tex]F_g = \frac{(6.67\times 10^{-11})(6.4191 \times 10^{23})(3400)}{(6.96\times 10^6)^2}[/tex]
[tex]F_g = 3.004 \times 10^3 N[/tex]
Part c)
Acceleration of satellite is the ratio of gravitational force and mass of the satellite
[tex]a = \frac{F_g}{m}[/tex]
[tex]a = \frac{3004}{3400}[/tex]
[tex]a = 0.88 m/s^2[/tex]
Part d)
As we know by III law of kepler
[tex]\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}[/tex]
here we know that T2 = 8 T1
[tex](\frac{1}{8})^2= \frac{r_1^3}{r_2^3}[/tex]
[tex]\frac{r_1}{r_2} = (\frac{1}{2})^2[/tex]
so we have
[tex]r_2 = 4r_1[/tex]
as we know that speed is given as
[tex]v = \sqrt{\frac{GM}{r}}[/tex]
so we can say since radius is orbit becomes 4 times so the orbital speed must be half
[tex]v = \frac{2480}{2} = 1240 m/s[/tex]