Respuesta :
Answer:
The rate of descomposition of N₂O₅ is: 2,8 M/s
Explanation:
The global reaction is:
2 N₂O₅ (g) → 4 NO₂ (g) + O₂ (g)
The problem says that rate of formation of NO₂ = 5,5x10⁻⁴ M/s where M is molarity -[tex]\frac{mol}{L}[/tex]-
The rate of descomposition of N₂O₅ is:
5,5x10⁻⁴ [tex]\frac{molNO_{2} }{L.s}[/tex] × [tex]\frac{2 mol N_{2}O_{5}}{4 mol NO_{2} }[/tex] = 2,8 M/s
I hope it helps!
Answer : The rate of decomposition of [tex]N_2O_5[/tex] is [tex]2.8\times 10^{-4}M/s[/tex]
Explanation : Given,
Rate of formation of [tex]NO_2[/tex] = [tex]5.5\times 10^{-4}M/s[/tex]
The given rate of reaction is,
[tex]2N_2O_5(g)\rightarrow 4NO_2(g)+O_2(g)[/tex]
The expression for rate of reaction :
[tex]\text{Rate of decomposition of }N_2O_5=-\frac{1}{2}\times \frac{d[N_2O_5]}{dt}[/tex]
[tex]\text{Rate of formation of }NO_2=+\frac{1}{4}\frac{d[NO_2]}{dt}[/tex]
[tex]\text{Rate of formation of }O_2=+\frac{d[O_2]}{dt}[/tex]
Now we have to calculate the rate of decomposition of [tex]N_2O_5[/tex].
As we know that,
[tex]\text{Rate of reaction}=-\frac{1}{2}\times \frac{d[N_2O_5]}{dt}=+\frac{1}{4}\frac{d[NO_2]}{dt}=+\frac{d[O_2]}{dt}[/tex]
So,
[tex]-\frac{1}{2}\times \frac{d[N_2O_5]}{dt}=+\frac{1}{4}\frac{d[NO_2]}{dt}[/tex]
[tex]-\frac{d[N_2O_5]}{dt}=+\frac{2}{4}\frac{d[NO_2]}{dt}[/tex]
[tex]-\frac{d[N_2O_5]}{dt}=\frac{2}{4}\times (5.5\times 10^{-4}M/s)[/tex]
[tex]-\frac{d[N_2O_5]}{dt}=2.8\times 10^{-4}M/s[/tex]
Thus, the rate of decomposition of [tex]N_2O_5[/tex] is [tex]2.8\times 10^{-4}M/s[/tex]