Answer:
0.6410g of HgS (mercury (II) sulfide) are formed
Explanation:
First you should write the balanced chemical equation, so we have:
[tex]Na_{2}S+Hg(NO_{3})_{2}=HgS+_{2}NaNO_{3}[/tex]
Where:
[tex]Na_{2}S[/tex] is the formula for the sodium sulfide
[tex]Hg(NO_{3})_{2}[/tex] is the formula for the mercury (II) nitrate
[tex]HgS[/tex] is the formula for the mercury (II) sulfide
and
[tex]NaNO_{3}[/tex] is the formula for the sodium nitrate
Then you should calculate the amount of each substance in each solution, so:
- For the [tex]Na_{2}S[/tex]:
[tex]Molarity=\frac{n_{Na_{2}S}}{Lofsolution}[/tex]
[tex]n_{Na_{2}S}=0.048M*0.236L[/tex]
[tex]n_{Na_{2}S}=0.010856[/tex] moles of [tex]Na_{2}S[/tex]
- For the [tex]Hg(NO_{3})_{2}[/tex]:
[tex]Molarity=\frac{n_{Hg(NO_{3})_{2}}}{Lofsolution}[/tex]
[tex]n_{Hg(NO_{3})_{2}}=0.019M*0.145L[/tex]
[tex]n_{Hg(NO_{3})_{2}}=0.002755[/tex] moles of [tex]Na_{2}S[/tex]
As the quantity of [tex]Hg(NO_{3})_{2}[/tex] is smaller than the quantity of [tex]Na_{2}S[/tex]. The [tex]Hg(NO_{3})_{2}[/tex] is the limiting reagent and you should work with this quantity, so we have:
[tex]0.002755molesHg(NO_{3})_{2}*\frac{1molHgS}{1molHg(NO_{3})_{2}}=0.002755[/tex] moles of HgS
And as the molar mass of the HgS is [tex]232.66\frac{g}{mol}[/tex] you can calculate the mass of HgS that is produced:
[tex]0.002755molesHgS*\frac{232.66gHgS}{1molHgS}=0.6410g[/tex] HgS