Respuesta :
Answer:
a)0.0229 m
b)0.393 rad
c)1.57
d)707.6 N
e)0.298 m/s
Explanation:
Given:
- Mass of the machine, m=70 kg
- Stiffness of the system, k=30000 N/m
- Damping ratio=0.2
- Damping force, F=450 N
- Angular velocity [tex]\omega=13\ \rm rad/s[/tex]
a)We know that the amplitude X at steady state is given by
[tex]X=\dfrac{\dfrac{F_0}{m}}{\sqrt{\omega_n^2-\omega^2)^2 +(2\rho \omega_n\omega)^2}}\\[/tex]
Where
- [tex]\omega_n=\sqrt{\dfrac{k}{m}}\\\\=\sqrt{\dfrac{30000}{70}}\\\\=20.7\ \rm rad/s[/tex]
- [tex]\omega=13\ \rm rad/s[/tex]
- [tex]\rho=0.2[/tex]
- [tex]F_0=450\ \rm N[/tex]
- [tex]m=70\ \rm kg[/tex]
[tex]X=\dfrac{\dfrac{450}{70}}{\sqrt{20.7^2-13^2)^2 +(2\times 0.2\times20.7\times13)^2}}\\[tex]X=0.0229\ \rm m[/tex]
b) The phase shift of the motion is given by
[tex]\tan\phi=\dfrac{2\rho \omega_n \omega }{\omega_n^2-\omega^2}\\\\\dfrac{2\times0.2\times20.7\times13 }{20.7^2-\13^2}\\\\\phai=0.393\\[/tex]
c)Transmissibility ratio is given by
[tex]T.R.=\sqrt{\dfrac{1+(2\rho r)^2}{(1-r^2)^2+{(2\rho r)^2}}}\\\\T.R.=\sqrt{\dfrac{1+(2\times0.2\times0.628)^2}{(1-0.628^2)^2+{(2\times0.2\times0/628)^2}}}\\\\=1.57[/tex]
d)The magnitude of the force transmitted to the ground is
[tex]F_T=(T.R)\times F_0\\\\=450\times1.57\\\\=707.6\ \rm N[/tex]
e)The maximum velocity is given by [tex]V_{max}[/tex]
[tex]V_{max}=\omega A_0\\\\=13\times 0.0229\\\\=0.298\ \rm m/s[/tex]