Answer:
Explanation:
We define density as
[tex]\rho = \frac{mass}{volume}[/tex]
So, the volume for our oil will be
[tex]volume = \frac{mass}{\rho}[/tex]
[tex]volume = \frac{7.62 \ 10^{-7} \ kg}{ 912 \ \frac{kg}{m^3} } [/tex]
[tex]volume = \frac{7.62 \ 10^{-7} \ kg}{ 912 \ \frac{kg}{m^3} } [/tex]
[tex]volume = 8.355 \ 10 ^{-10} \ m^3[/tex]
the volume for a cylinder with radius r and height h is
[tex]volume = \pi r^2 h[/tex]
So, we can obtain the height of the droplet of oil as:
[tex] h = \frac{volume}{\pi r^2}[/tex]
the radius is
[tex]r=43.5 \ cm = 0.435 \ m[/tex]
[tex] h = 1.405 10 ^{-9} \ m^3[/tex]
And this is the diameter of the oil molecule.